DARK MATTER HALOS

or nonlinear growth




SPHERICAL COLLAPSE
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¢ Once perturbations become large, d > |, they do not
evolve independently nor follow our simple linear
theory. In order to follow the density evolution
requires numerical techniques (N-body simulations).

¢ However, we can gain insight into what will happen by
considering high degrees of symmetry, like the
collapse of a region with perfect spherical symmetry.

¢ These types of models can be useful in giving us
insight into what occurs and the limitations of our

physical understanding.



SPHERICAL COLLAPSE IN A

A=0 UNIVERSE

¢ In the absence of dark energy a shell in a spherical density
perturbation evolves according to
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¢ This can be integrated once to give
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® where & is the specific energy of the shell. For & < |
collapsing shells the motion of the shell can be written as

r = A(1 — cos(f)) t = B(6 — sin(6))



SPHERICAL COLLAPSE IN A

A=0 UNIVERSE

r = A(1 — cos(0)) t = B(0 — sin(0))

® We can see from these functions that the maximum radius the
shell will reach is rmax = 2A at a time tmax=TTB.

¢ We also see that the shell would reach the center, r=0 at tco =
2tmax. YVhile this isn’t really physical, conceptually we define two
times the time where the shell reaches maximum expansion as
the time when the shell collapses.

¢ We can ask what would the overdensity be assuming just linear
growth until this time and get
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SPHERICAL COLLAPSE IN A

A>0 UNIVERSE

¢ With dark energy the equation for a shell becomes
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® this is harder to solve in closed form, but with a
number of approximations one can get the
overdensity and the collapse time as

3D(t) Nesie 6GM QU (teor) L2 e
Ol S ol li— 1 e 5 168600 (T or i
e = 55 57 (1 58 (R o i



COLLAPSE OVERDENSITY

¢ |n both cases the dependence on Qn, is very weak
(0.0185 and 0.0055) so we can take the linear density

when collapse occurs to be 0. = 1.686.

¢ Note that this is the density a perturbation would
have extrapolated from linear theory, where it clearly
doesn’t apply. Alternatively, the density would be
infinite in the shell model when r=0.

¢ This model gives us a sense of the linear overdensity
that would be a collapsed object. Which is how we

will use it.



VIRIAL THEOREM

¢ What would be the size or density of our collapsed
objects?

® VWe can use the virial theorem to relate the kinetic and
potential energies of our collapsed halo.
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¢ Let’s consider the collapse of a uniform sphere of mass
M in a A=0 universe. At maximum expansion the
kinetic energy is zero so the total energy would be
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VIRIAL DENSITY

¢ There is no dissipation of energy so after collapse the
total energy is the same but now PE = 2E. Since the

mass in the system doesn’t change the radius after
collapse would be, rvir = 1/2 rmax.

¢ The mean overdensity within ryi- at tvir is then
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¢ where p is the mean matter density of the universe.

¢ For QOn = | we get Ayir = 18112 = |78.



VIRIAL DENSITY

¢ For open or flat universes with dark energy the
situation is much more complicated. Bryan & Norman

(1998) provided fitting functions where x= Qm(tvir) -1.
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IDENTIFYING DARK MATTER
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These definitions are often used in defining dark matter halos. Note that in reality
there is only a density field, it has no edges.

But conceptually it is convenient to consider a dark matter halo as an object that
can be associated with a galaxy.

There are two main ways this is done:

¢ One is to use the Friends-of-Friends algorithm which associates particles into a
group by a linking length. The problem with this method is that the shape of these
groups can be anything and the choice of liking length is basically arbitrary.

¢ Another choice is to consider when the spherical overdensity in some region has
a particular value. That value is often set by the virial overdensity definition we
have just discussed. Though people also just take 200p. as an approximation to
that.



¢ Clearly halos should form where there are peaks in the
density field. In order to normalize out the power
spectrum we can normalize the peak height by the mass
variance.

¢ The statistical properties of peaks can be calculated
analytically for Gaussian random fields. Thus one can
determine the number density, ellipticity, and correlation
function for peaks analytically.



HALO MASS FUNCTION

¢ One thing it would definitely be interesting to know is the number of
halos of different masses. An analytic model using the spherical
collapse model was worked out for this by Press & Schechter in 1974.

¢ They considered smoothing the density field by a window function
Dl i) = /5Z(a7’)W(x e R

¢ Then they reasoned that the probability that Os > O.(t) is the same as
the number of mass elements that at time t are in halos with masses
greater than M. If Oiis a Gaussian random filed then so is O and the

probability is given by
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PRESS-SCHECHTER MASS

AL SRR,
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¢ According to the argument the number of halos with mass
greater than M should just be the same thing. Butas M —
O the probability function goes to 1/2.Which makes sense
because half of the density fluctuations are negative. Press
& Schechter multiplied this by 2 so that all mass is in halos.
That gives a differential mass function of
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PRESS-SCHECHTER MASS

AL SRR,
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¢ This is basically a power Iaw or Iow masses with an

exponential cutoff for high masses.

¢ The transition occurs at a halo mass M* given by

o(M*) = b:(t) = 55
¢ Schechter also proposed that a similar shape function
should fit the luminosity distribution of galaxies

n(L)dL = ¢ (L*) e T3



halo halo

van den Bosch




HALO MASS FUNCTION
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¢ Comparing to simulations we see the P
Press-Schechter mass function is : \
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MERGER HISTORIES

¢ |n the spherical halo model the halo grows by continually
accreting new shells of matter, we could call this smooth
accretion.

¢ But in reality there are many peaks in the density field.As they
grow they attract one another and many will eventually merge.

¢ This might not matter as far as the total mass of the halo goes,
but if we think there are galaxies in the halos then merging
halos would lead to merging galaxies which might be very
different than smoothly accreted matter.



EXTENDED PRESS

SRR

® We can get a sense of how halos merge by extending the
Press-Schechter formalism. Remember Press-Schechter asked

if the smoothed overdensity in a region was above Oc(t).

¢ Now what if we asked at earlier time if subparts of that region

were above 0((t), that would tell us which of those subparts
were halos. As a function of time this would give us a halos
merging history.

¢ Since the density of a Gaussian random process the smoothed
density essentially does a random walk as we increase the
scale. This gives us a way to trace the halos history.
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Trajectory B’ mirrors trajectory B and therefore is equally likely.



MERGER TREES

Halo 810, 3.10e+12

While merger histories can be
determined from EPS, it is much more
reliable to extract them from N-body
simulations ( ).

=

However these will always be
resolution dependent, only including
halos above a certain mass.

p o -

Merger trees are complicated and hard
to work with, often people just focus
on the main progenitor branch.
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FORMATION TIME
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¢ Many growth histories can be averaged to show how
growth depends on mass.

¢ Lower mass halos reached the same fraction of their
current mass a longer time ago.



DENSITY PROFILE OF HALOS

¢ A simple model of the density profile of a dark
matter halo is the isothermal sphere which has the
advantage that it gives a flat rotation curve.

M(T) S %T V(?") = \/G]\i(?“) = Vh
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¢ But the density at r=0 is infinite and the mass
enclosed goes to infinity with r.

¢ Fits to N-body simulations find profiles like the one
proposed by Navarro, Frenk and White (NFW) |996.

;s =05
) (r/rs)(1+1/rs)?




NFW PROFILE

This profile goes like r-! at small r and r-3 and large r. The halo is truncated at
some rvir, because there really is not an edge to a halo it is just a peak in the
density field.

Other studies have found that the inner profile may be as steep as r-!>, but there
is disagreement about this. The range from -| to -1.5 is now generally accepted.

The ratio c=rs/rvir is called the halo’s concentration as for halos of the same mass
it determines if there is more or less mass in the inner parts of the halo.

The mean concentration of halos has been found to be a function of halo mass
with less massive halos being more concentrated. This is generally understood as
the concentration having to do with the formation time of the halo, halos that
form earlier should be denser and we have shown that formation time is earlier
for lower mass halos.



ANGULAR MOMENTUM

¢ Another interesting property of halos is their angular
momentum. The angular momentum can be described by a
dimensionless parameter called spin (Peebles 1969) which is
basically the square root of the rotational energy compared to
the total energy of the system.

el J|E|1/2

N GM35/2

¢ An alternative definition which avoids the difficulty of calculating
the energy of the system and allows for considerations besides

the total system e J
B P——
\/inierierir

® The +/2 makes the values equal for an isothermal sphere.




ANGULAR MOMENTUM
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¢ |t has been found 251
that the spin
distribution of
halo follows a log
normal
distribution with 0
a mean around

A~0.035.
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SUBHALOS

¢ As the resolution of
simulations improved they
became capable of resolving
substructure in a halo.

® Some of this substructure
can be identified as sub
halos, though definitions but
be different. Subhalos are
identified by having a density
higher than the host halo at
that radius.




SUBHALOS

¢ Resolving subhalos is very tricky and one must be
careful considering numerical effects when looking at
their destruction and evolution when they get small.

¢ Measuring the number of sub halos in halos that
would host a Milky Way has led to an issue called the
missing satellites problem which notes that there are
way more sub halos in a simulation then satellite
galaxies observed around the Milky Way or
Andromeda.



A quantitative comparison of # satellites at r < 400 kpc
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MISSING SATELLITE PROBLEM

¢ This problem is a little bit

overblown, because we already
know the galaxy mass function
doesn’t follow the halo mass
function, but it does show how it
gets extreme at low mass.

Many people have suggested
changes to dark matter to address
this problem, warm dark matter,
self-interacting dark matter; or
fuzzy dark matter.

It is also quite likely this is just a
consequence of galaxy formation.
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EMPIRICAL RELATIONS

Galaxy to Halo Mapping




MAPPING GALAXIESTO

PRl RN

Now lets turn back to galaxies. It seems like we should be able to get
more information from galaxies then just the correlation function and in
fact we can.

The next step is to model the connection between galaxies and dark
matter, there are a number of ways to do this:

Halo Occupation Distribution: Connect the number of galaxies to the
dark matter halo.

Conditional Luminosity Function: Determine a probability of a galaxy of a
given luminosity based on the dark matter halo mass.

Sub Halo Abundance Matching: Put one galaxy in every sub halo based on
some property.



“Halo Occupation” Bias

1. All galaxies live in DM halos

2. The galaxy content of a halo is statistically independent of
the halo’ s larger scale environment (depends only on mass)

The bias of any class of galaxies (luminosity, type, etc.) is fully
defined by the Halo Occupation Distribution (HOD):

* The probability distribution P(N|M) that a halo of mass M contains
N galaxies of that class.

* The relation between the spatial distributions of galaxies and DM
within halos.

* The relation between the velocity distributions of galaxies and DM
within halos.




Cosmological Model

Q, P(k), etc.

Galaxy Formation

Gas cooling, Star formation,
Feedback, Mergers, etc.

A 4

Dark Halo Population

N(M), p(r[M), &(r[M), v(r|M)

skip galaxy formation

Y

Halo Occupation Distribution
P(N|M)
Spatial bias within halos
Velocity bias within halos

N/

Galaxy clustering
Galaxy-Mass correlations




Dark Halo Population




Dark Halo Population Galaxy Population




Why is the Halo Occupation Distribution (HOD)
the right way to think about bias?

* Complete: It tells us everything a theory of galaxy formation has
to say about galaxy clustering (all statistics, all scales).

* Physically illuminating: Discrepancies offer guidance about their
physical origin.

* Observationally powerful: Description of bias at the level of systems
iIn dynamic equilibrium, where methods
can constrain mass.

Nice conceptual division between roles of “cosmological model” and
“theory of Galaxy formation”.



The basic approach.

Develop machinery to compute galaxy clustering statistics
given halo properties (mass function, etc.) + HOD.

We know how to go from cosmological parameters to halo
properties.

Parameterize the HOD (and thus our ignorance about galaxy
formation).

Fit cosmological + HOD parameters (or HOD parameters at
fixed cosmology) to galaxy clustering measurements.

Use measured HODs to gain insight into galaxy formation.




How do we parameterize the HOD?

Look at theoretical predictions for guidance.

Interested in moments of P(N|M), as well as radial
and velocity distributions within halos.




How do we parameterize the HOD?

Look at theoretical predictions for guidance.

Interested in moments of P(N|M), as well as radial
and velocity distributions within halos.




How do we parameterize the HOD?

A note about the second moment of integer distributions

For a Poisson distribution: <N2> — <N>2 + <N>

Narrower distributions have a smaller value than this and wider distributions
have a larger value for the number of pairs.



How do we parameterize the HOD?
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How do we parameterize the HOD?

Halo 1777, M=1.03e+14 M,
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How do we parameterize the HOD?

For luminosity/mass threshold samples:




The HOD contains information about physics!

Baryon/DM fraction Dynamical friction
Gas cooling Tidal disruption

Star formation efficiency

DM halo merger statistics



How do we compute clustering statistics?

Number density




How do we compute clustering statistics?

2-pointCorrelation function :
P Small scales: All pairs come from same halo.

1-halo term

Large scales: Pairs come from separate halos.

2-halo term

Berlind & Weinberg (2002)



How do we compute clustering statistics?

2-point correlation function

Characteristic size of halo

Halo model generically predicts
departures from a power law in

the correlation function.
2-halo term

1-halo term




How do we compute clustering statistics?

N-point correlation functions

3-point function has 3 terms: 1-halo, 2-halo, 3-halo
1-halo term depends on <N(N-1)(N-2)>

Redshift-space and velocity statistics

Need model for velocity distribution in DM halo
+ velocity bias for galaxies

Luminosity function




How do we compute clustering statistics?

Improvements to standard halo model

* Non-linear P(k) in 2-halo term

« Scale dependence of halo bias: b(M,r)

* Halo exclusion

* Non-spherical halos

* Non-NFW profiles

* Dependence of b(M) and/or P(N|M) on halo assembly history

« Parameterize P(N|M) for non-trivial galaxy populations
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CMB only

CMB+SDSS P (k)




Alternatives to the halo model / HOD approach

Use a high resolution N-body simulation to place galaxies in
halos + subhalos, assuming relations between galaxy and
subhalo properties. (i.e., use subhalo distribution instead of HOD)
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Halo/Subhalo Abundance Matching

Galaxy luminosity function
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Halo/Subhalo Abundance Matching

Luminosity
or
Stellar Mass

Halo/Subhalo Mass



Halo/Subhalo Abundance Matching

SDSS
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Halo/Subhalo Abundance Matching

What subhalo property should be used?

M_..,V

dcCC ’? dCC




Halo/Subhalo Abundance Matching
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Alternatives to the halo model / HOD approach

Use a high resolution N-body simulation to place galaxies in
halos + subhalos, assuming relations between galaxy and
subhalo properties. (i.e., use subhalo distribution instead of HOD)

Advantages:

* Let gravity predict what the spatial and velocity distribution of
galaxies is.

* Works fairly well for luminosity threshold samples: L, ~ M,
(Conroy et al. 20006)

Disadvantages:

* Not clear how to populate subhalos with non-trivial galaxy samples
(split by color, type, etc).

* Assumes that subhalo evolution within host halos traces that of
galaxies.

* Much too slow to constrain cosmology.




Alternatives to the halo model / HOD approach

Use a Conditional Luminosity Function (CLF) to model the
luminosity dependence of clustering.

dM%CI)(L\M) (N),, = T dLO(L|M )

min

Advantages:
* Don’ t have to assume a form for <N(M)>
* More ambitious: model the luminosity dependence explicitly

Disadvantages:
* Have to assume a form for ¢(L|M)
* More ambitious: luminosity dependence is model dependent

Methods are very similar and complementary.




