
THE DYNAMICAL UNIVERSE
Week 3



THE METRIC

So we have seen that the Robertson-Walker metric describes a 
space-time with the symmetries of the cosmological principle.

Solving Einstein's equation for this metric gives the Friedman 
equations that describe how the expansion parameter or scale 
factor, a(t), depends on the matter-energy properties of the 
universe.

First, however, let us just look at a some things that just depend 
on the metric; co-moving distance, proper distance and 
geodesics.



COMOVING  DISTANCE
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One thing to notice about the metric is that all time 
dependance takes place outside the spatial part.

Two points (r1,θ1,φ1) and (r2,θ2,φ2) will maintain the 
same coordinate values for all t if there are no forces.

These are called comoving coordinates and the 
distance between them comoving distance. 





PROPER DISTANCE

There are many meanings of distance in cosmology and 
the end of this section we will go over them. 

However, the most important measure is the proper 
distance, the distance between 2 points measured at the 
same time.

Note that proper distance is not observable. Since we can 
orient our coordinates as we like we can always make two 
points only vary by the r coordinate.  Then we have.
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PROPER DISTANCE 

So the proper distance is give by 

If we take the time derivative of the proper distance we get

v = ḋp =
ȧ

a
dp

Which gives us the 
Hubble Law with H(t) =

ȧ

a

The Hubble Law is a consequence just of the metric. Note that 
the Hubble ‘constant’ is not constant but evolves with time.
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GEODESIC EQUATION

One thing to notice about the metric is that all time 
dependance takes place outside the spatial part.



COSMOLOGICAL REDSHIFT

Let us consider a wave emitted by some distant galaxy.  
If massless the wave will follow a geodesic, ds2 = 0.  So, 
cdt2 = a2dr2, since I can choose no angular motion.

Imagine a wave crest emitted at time te and observed at 
time to, then

Now consider the next wave crest emitted at te+λe/c 
and observed at to+λo/c. For it 
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COSMOLOGICAL REDSHIFT

So we see that 

If we subtract off the part of the integral that is the 
same we are left with

The universe expands very slowly compared to the 
oscillation of light so we can take a(t) constant and take 
it out of the integral.
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COSMOLOGICAL  REDSHIFT

But we have already encountered this wavelength 
shift and we call it a redshift, z=(λo-λe)/λe.

1 + z =
�o

�e
=

a(to)

a(te)
=

1

a

So z directly measures a. Note this is a truly cosmological effect 
even if at low z it acts like a doppler shift.  However it is possible to 

have z > 1 which doesn’t make sense as a doppler shift. Some 
common values of z and a:

z 0 0.5 1 2 3 4 9

a 1 2/3 0.5 1/3 0.25 0.2 0.1

z is observable a 
is what you have 

in the metric



DERIVING THE FRIEDMANN 
EQUATIONS



DERIVING THE FRIEDMANN 
EQUATIONS
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To derive the Friedmann 
equations we start with the 

metric and must determine Rμν.
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as you can see this is going to require some 
effort, so I’m just going to do the first term, R00.
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THE R00 TERM
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The metric is diagonal so only g00≠0. So now we are down to 
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g00=g00=-1.  The first two terms are always zero, since only g00 is 
non zero and the derivative of -1 with respect to ct,x,y, or z is 0.
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THE R00 TERM

Now let’s try �i
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Again the metric is diagonal so only if ν=i do we get nonzero terms.  
This means the first and third term are always zero so we are left with
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Now you can see we only get 
nonzero terms for i=j 
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THE R00 TERM

Now let’s try 

The first and third terms are always zero so we have 
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So the only nonzero Chistoffel symbols are 
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ȧ

a

◆2

= �3
ä
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OTHER TERMS

With lots of hard work you can also find that 

The Ricci scalar is then Rij = �
"
ä
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ȧ

a

◆2

+
2k

a2

#
gij

R = gµ⌫Rµ⌫ = �3
ä
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EINSTIEN TENSOR
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where the c2 factors have reappeared though 
I lost them somewhere along the way. 



EINSTIEN EQUATION 
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The G22 and G33 terms give the same results as the G11 
term.  A consequence of the isotropy we have assumed.



FRIEDMANN EQUATIONS
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This one is also called the acceleration equation

From these equations one can determine the behavior of a(t) 
knowing ρ and P.  However there are 2 equations and 3 

unknowns so this is not enough to solve them.  One also needs 
an equation of state, that is a relationship between P and ρ.



FLUID EQUATION

A 3rd useful equation can be derived from the previous two equations 
called the fluid equation or sometimes the 3rd Friedmann equation.
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⇢2ȧa� 8⇡G

3
⇢̇a2

substituting the 2nd Friedmann 
equation for ä gives

2ȧ
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This is basically a statement of energy conservation, the rate of energy 
change is equal to the expansion rate times the energy density.



EQUATIONS OF STATE

We basically consider 3 possible equations of state relating pressure to 
density.  We will explore a universe dominated by one of these called a 
single component universe. Of course we think all 3 relations hold for 

different types of matter/energy so we really live in a multiple 
component universe.  In general a relation can be written as 

matter P = 0

radiation (relativistic particles) P =
1

3
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P = w⇢c2

constant dark energy P = �⇢c2



SINGLE COMPONENT 
UNIVERSES



FRIEDMANN EQUATIONS
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Now with Λ in them. You can either put Λ in 
explicitly or consider Λ the case of P=-ρc2.

Let’s now explore special cases of just one component.



DENSITY EVOLUTION

We can combine the fluid equation with the 
equation of state to see how densities will evolve.
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So the density of a single component fluid goes to the power of 
-3(1+w).  While we know the universe has different components, when 

it is dominated by only one then we expect this time of scaling.



MATTER ONLY

In a matter only universe w=0 and k=Λ=0. 
From the previous equation we see that 

⇢m(a) = ⇢m(0)a�3

So in a matter dominated universe density is proportional to 1/
a3.  This makes sense since matter exerts no pressure and is 

conserved, as a volume gets bigger the density must decrease 
just enough so that the total matter content remains unchanged.

plugging back into the Friedmann equation we have
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CRITICAL DENSITY

If we ignore Λ and curvature for a moment the Friedman equation becomes✓
ȧ

a

◆2

=
8⇡G⇢

3
= H(z)2

This can be used to define a critical density, ρc, which is the mean 
density of the universe with no curvature and no cosmological constant.

⇢c =
3H2
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Since H0 is around 70 km/s/Mpc the critical density 
today is ρc= 9.9×10-27 kg/m^3 or 5.9 protons/m3.

Why that might sound like a pretty low density, best 
estimates are that the density of normal atoms is less 

than 1/20 of that or 0.27 protons per cubic meter.



OMEGAS

We can introduce a dimensionless density, by dividing ρ by ρc.
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Then the first Friedmann equation becomes 
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Remember this is a dynamical equation 
since all three Ωs depend on H(z).



RADIATION ONLY

How about a universe with radiation only.  
Now w=1/3  so we get 

⇢(a) = ⇢(0)a�3(1+ 1
3 ) = ⇢(0)a�4

In a radiation (or relativistic particle) dominated universe 
density goes as 1/a4.  How can we understand this? 

Remember the energy of a photon is 

E =
hc

�

but in an expanding universe λ goes like a. So 
E is proportional to 1/a and then you have the 

1/a3 volume increase to give 1/a4.

As the universe expands each photon looses 
energy and the density of photons decreases.



RADIATION ONLY

plugging back into the Friedmann equation we get 

⇒
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A radiation dominated universe grows slower than a matter 
dominated universe.  This at first may seem strange, but the 
pressure of the radiation contributes to the energy tensor 

and thus makes gravity stronger compared to matter.



MATTER RADIATION 
EQUALITY

Note that the matter and radiation density scale and different rates.   

⇢m =
⇢m(0)

a3
⇢r =

⇢r(0)

a4

That means that as long as there is some relic radiation density 
today then at some point in the past radiation dominated over 
matter.  And as long as there was some matter originally then at 

some point it will take over and dominate the expansion.

The time when ρm=ρr is called matter-radiation equality and 
can be determined knowing the relative density of each today.



MATTER RADIATION 
EQUALITY

As we will see later we can measure the radiation density of the 
universe from the Cosmic Microwave Background (CMB).

This is a black body, has a temperature of 2.73K and therefore a 
energy density of ρrad = aT4 = 7.6×10-15 (2.73)4 = 4.2×10-13 ergs/cm3.  

The current matter density of the universe is around 2.5×10-9 ergs/
cm3, or 5950 times greater.  We can determine when the two were 
equal from ⇢rad = ⇢rad,0(1 + z)4 ⇢m = ⇢m,0(1 + z)3
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where the 1. 7 accounts for neutrinos.  Since it has been matter 
domination up to this point we can get the time from

t = t0a
� 3

2 = 4.8⇥ 10�6t0
The universe has been matter 

dominated for a long time.



EMPTY UNIVERSE

We can also consider an empty universe, ρ=0.  Then

ȧ2 = �c2

R2
0

One solution to this is ȧ =0 and κ=0.  An empty, static universe 
is allowed under Friedmann’s equations. It is also possible to 

have a negatively curved universe (but not a positive).

ȧ = ± c

R0
This means the Hubble parameter is a constant so
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The age of the universe is



AGE OF UNIVERSE

We have just seen that the age of the universe is H0-1 
if Ωm = ΩΛ = 0.  On the other hand if ΩK = ΩΛ = 0 

✓
ȧ
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Since the oldest stars are ~12Gyr and we know the universe isn’t empty 
this was a worry and why people brought back the cosmological constant.



LAMBDA UNIVERSE

We can also take w=-1 a dark energy dominated universe. Then
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so where

and εΛ is does not change with a. Thus a grows with time as 

A Lambda universe does not have a big bang.

a approaches zero asymptotically, the universe is infinitely old. 
Note in this case t0 is defined by the current time.  Most 

importantly adding Lambda makes the universe older.  Unlike a 
matter universe a increases instead of decreasing with time.



MULTIPLE COMPONENTS

We know our universe contains radiation and matter.  We 
suspect it has some sort of dark energy and why it seems 
to be close to flat we can’t rule out some curvature.

Thus we can write a version of the Friedmann equation 
with the minimal terms we think should be there.

We can clean this up by replacing the constants with the 
dimensionless Omegas and ȧ with H(z).
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ȧ

a

◆2

=
8⇡G

3c2
(✏r + ✏m + ✏⇤)�

kc2

a2

✓
H(z)

H0

◆2

= ⌦r + ⌦m + ⌦⇤ + ⌦K



MULTIPLE COMPONETS

We have just seen how all of these components scale 
with a, so we can replace the Omegas by their current 
value and how they scale. 

This can be written as H(z) = H0 E(z) where

In this form we have a formula for the Hubble parameter 
in terms of observables.  This can then be used to derive 
most cosmological quantities of interest.

H
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MATTER + CURVATURE

Let’s consider only matter and curvature for a moment.  In 
this universe we can ask the question, will expansion end?  

This will happen if H(z) = 0.

H
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max + ⌦K,0a
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If Ωm,0 > 1 then the universe reaches 
a maximum size and begins to 

contract after that.  Nothing stops 
the contraction and eventually a→0 
in what is often called a ‘Big Crunch’.

If Ωm,0 < 1 then the universe expands forever.



DECELERATION PARAMETER

Since in general the exact functional form of a(t) is not analytic, instead 
we can do a Taylor expansion for a(t) around the present moment.
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is called the deceleration parameter 
(notice the sign in the above equation)

where
whereThis parameterization can be useful because it is physics free, it doesn’t 

even depend on GR.  In the standard cosmology it can be expressed as 
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HOME WORK

In a positively curved universe containing only matter 
show that the present age of the universe is 
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DISTANCES

In Euclidean space we just have one measure of 
distance, the metric.

In cosmology, many of our Euclidean notions of 
distance turn out to have different values.

Thus there are different distances with different 
names; the comoving distance, the transverse 
comoving distance, the angular diameter distance and 
the luminosity distance.



HUBBLE VALUES

It can be useful to define a time and length based on 
the value of the Hubble parameter today.  These are 

called the Hubble time tH and the Hubble distance DH.

tH =
1

H0

DH =
c

H0

If H0 = 70 km/s/Mpc then tH = 14 Gyr and DH = 4283 Mpc. 
These numbers give you roughly the age and observable 

size of the universe, though they are modified by factors of 
order unity depending on the exact cosmology. 



PROPER DISTANCE

As mentioned before proper distance is the distance 
between two points at the same time. 

dp = a(t)

Z r

0

drp
1� kr2

=

8
><

>:

a sin�1(r) k = +1

ar k = 0

a sinh�1(r) k = �1

The proper distance of some light emitted 
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COMOVING DISTANCE

dc(z) = DH

Z
z

0

dz0

E(z0)

The comoving distance is the distance between points that 
remains fixed if the points are moving with the Hubble flow 

(i.e. not moving with respect to the metric).

dc(z) = (1 + z)dp

Note that the proper distance between two points does 
change with a, while the comoving distance does not.  
The comoving distance is in some sense fundamental 
because all other distances can be derived from it.



PROPER MOTION DISTANCE

The transverse comoving distance or proper motion distance is 
the distance between points at the same redshift but separated by 
an angle δθ, where the distance between the points is then dMδθ. 

It is given by
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This distance is also the ratio of the actual transverse velocity 
(length/time) of an object to its proper motion (radians/time).



ANGULAR DIAMETER 
DISTANCE

Angular diameter distance is defined as the ratio of an 
objects physical transverse size to its angular size.

Note that, depending 
on cosmology, 
objects may not get 
smaller as they get 
farther away.  This is 
the case for the 
favored cosmology.

da(z) =
dm(z)

(1 + z)



LUMINOSITY DISTANCE

Luminosity distance is what you would 
use to get the flux from a light source.

f =
L

4⇡d2L
dL(z) = (1 + z)dm = (1 + z)2da

The later equality can be understood as the surface 
brightness of a receding object is reduced by a factor 

(1+z)-4, and the angular area goes down as da-2.



COMOVING VOLUME

Finally the comoving volume is the volume measure in which 
number densities of unchanging objects remain the same.

dVc = DH

(1 + z)2d2
a

E(z)
d⌦dz

The probability of a line of sight intersecting an object with 
comoving density n(z) and cross section σ(z) is 

dP = n(z)�(z)DH

(1 + z)2

E(z)
dz


